

US EPA RECORDS CENTER REGION 5

June 4, 2014

Ms. Stephanie Linebaugh U.S. EPA – Region 5 77 West Jackson Blvd (SR-6J) Chicago, Illinois 60604-3590

RE: Sauget Area 2 Site – October 3, 2002 Unilateral Administrative Order Groundwater Operable Unit

Dear Stephanie:

Attached, is the March 2014 Quarterly Groundwater Monitoring Event Report for the GMCS.

Any questions, please advise.

Sincerely,

Steven D. Smith Project Coordinator

cc: Lisa Cundiff - CH2M Hill

Paul Lake – Illinois EPA (2 copies)

Bill Johnson - Solutia

May 27, 2014

Project No.: 063-9678

Mr. Bill Johnson – 2N Solutia Inc. 575 Maryville Centre Drive St. Louis, MO 63141

RE:

MARCH 2014 QUARTERLY GROUNDWATER MONITORING EVENT SAUGET AREA 2 – SITE R, SAUGET, ILLINOIS

Dear Mr. Johnson:

Golder Associates Inc. (Golder) is pleased to submit this letter report to Solutia Inc. (Solutia) summarizing the March 2014 Quarterly Groundwater Monitoring Event at Sauget Area 2 – Site R (Site). At the request of Solutia, Golder conducted the quarterly sampling event at the Site from March 10, 2014 through March 13, 2014. The work included the collection of groundwater samples from 11 of the 12 monitoring wells in accordance with the Field Sampling Plan (FSP; URS, 2003). This letter summarizes the work performed during the quarterly event and includes Detection Summary Tables (Appendix A) and the Data Validation Report (Appendix B). The Lenexa, Kansas location of Pace Analytical Services, Inc. (Pace Analytical) performed analytical testing of the groundwater samples. Laboratory reports are not included in this letter report. Laboratory reports were forwarded directly from Pace Analytical to Solutia.

GROUNDWATER SAMPLING

Groundwater samples were collected from four monitoring well clusters. Each well cluster consists of three two-inch diameter wells, with one well screened in the Shallow Hydrogeologic Unit, one well screened in the Middle Hydrogeologic Unit, and one well screened in the Deep Hydrogeologic Unit. Groundwater was purged and sampled from 11 of the 12 wells with a centrifugal positive pressure pump and dedicated polyethylene tubing. A groundwater sample was not collected for well BWMW-4S because the well was dry, therefore sufficient water was not available for sample collection. Field measurements of pH, specific conductivity, turbidity, and temperature were recorded for all groundwater samples. Purging continued until the turbidity reached or fell below five nephelometric turbidity units (NTUs), or stabilization of field parameters was achieved for one hour, whichever occurred first. Prior to the purging and sampling of the monitoring wells, a synoptic round of water level measurements of the 12 wells was completed.

Groundwater samples were collected directly into laboratory-provided, pre-preserved sample bottles and packed on-Site following chain-of-custody protocol. The following laboratory tests were requested for the groundwater samples and associated quality assurance/quality control (QA/QC) samples:

- Volatile Organic Compounds (United States Environmental Protection Agency USEPA Method 8260B)
- Semi-Volatile Organic Compounds (USEPA Method 8270C)
- Organochlorine Pesticides (USEPA Method 8081A)
- Chlorinated Herbicides (USEPA Method 8151A)
- Metals (USEPA Method 6010B/7470A)
- Total Organic Carbon (SW846 Method 9060/SM 5310C)

Total Dissolved Solids (USEPA Method 160.1/SM 2540C)

After collection, the groundwater samples were delivered to the Pace Analytical Service Center in Florissant, Missouri. The samples to be analyzed for volatile organic compounds, semi-volatile organic compounds, metals, total organic compounds, total dissolved solids, and general chemistry parameters were transported to the Lenexa, Kansas laboratory via courier. The samples to be analyzed for chlorinated herbicides were shipped for next day delivery to the TestAmerica Savannah, Georgia facility by the Pace Analytical Service Center in Florissant, Missouri.

Groundwater samples were designated by the well number. QA/QC samples consisted of two field duplicates (DUP-1 and DUP-2) collected at BWMW-4M and BWMW-1D, respectively, a matrix spike and matrix spike duplicate (MS/MSD) collected at BWMW-2M, two rinsate blanks (RB-1 and RB-2) collected following the collection of samples at BWMW-2S and BWMW-1D, two field blanks (FB-1 and FB-2), and two trip blanks. Level III data validation was performed on all the analytical data packages, and Level IV data validation was performed on ten percent of the analytical data packages. Some analytical data were qualified; however, no data were rejected.

Sampling equipment was decontaminated prior to mobilizing to the Site, between sample locations, and prior to demobilizing from the Site. Non-dedicated sampling equipment was decontaminated between samples with non-phosphatic detergent solution and a potable water sprayer. Purged groundwater and decontamination water were containerized in an on-Site vertical storage poly-tank.

Work was performed in general accordance with the January 31, 2003 Sauget Area 2 Groundwater Migration Control System FSP and Quality Assurance Project Plan.

Please contact us if you have any questions about the work or require additional information.

Sincerely,

GOLDER ASSOCIATES INC.

Smal Dehake

Amanda W. Derhake, Ph.D., P.E.

Project Environmental Engineer

Mark N. Haddock, R.G., P.E.

Mark N. efallar

Associate, Senior Geological Engineer

Attachments

Appendix A - Detection Summary Tables

Appendix B - Data Validation Report

APPENDIX A

DETECTION SUMMARY TABLES

Table 1 Summary of Validated Groundwater Sample Data - Organics (March 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solutia Inc. - Sauget, Illinois

	_												
Monitoring Well		BWMW-1S	MDL	BWMW-1M	MDL	BWMW-1D	MDL	BWMW-2S	MDL	BWMW-2M	MDL	BWMW-2D	MDL
Lab Sample ID		60164660017		60164660016		60164660015		60184680014	_	60164660013		60164660012	
Date Sampled		3/13/2014		3/13/2014		3/13/2014		3/12/2014		3/12/2014		3/12/2014	
Time Sampled		12 05		10-05		11 52		14 21		10 00		10 25	
Volatile Organic Compounds (USEPA Methe	od 8260B)												
Date Prepared													
Date Analyzed	_	3/26/2014		3/26/2014		3/26/2014		3/21/2014		3/21/2014		3/21/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
1,1-Dichloroethene	75-35-4	200 U	200	10 0 U	100	- 10 0 U	100	0 40 U	0 40	50 U	50		100
1,2-Dichtoroethane	107-06-2	120 U	120	600	60	60 U	6.0	0 24 U	0 24	30U_	30	60 U	60
2-Butanone	78-93-3	590 U	590	29 5 U	29 5	29 5 U	29 5	7.0 J	12	117 J	148	383 J	29 5
Acetone	67-64- 1	2,020 J	1880	108 J	94 0	107 J	94 0	38 U	38	47 0 U	47 0	94 0 U	940
Benzene	71-43-2	8,100	60 0	465	30	47.1 J	30	0.61 J	0 12	164	15	747	30
Chloroberzene	108-90-7	168,000	210	1,960	10 5	8,190	10.5	153	0 42	2,230	52	3,920	10.5
Chloromethane	74-87-3	80 O U	80 0	40 U	40	40U	40	0 16 U	0 16	20U	20	40 U	40
cis-1,2-Dichloroethene	156-59-2	80 C U	80 0	4 0 U	40	4 0 U	40	0 16 U	. 016	20 U	20	4 0 U	40
Ethylbenzene	100-41-4	180 U	180	9 O U	90	900	90	0 36 U	0 36	6.0 J	45	86.0	90
Toluene	108-88-3	170 U	170	8 5 U	85	8 5 U	8.5	0 34 U	0 34	42 U	42	21 J	85
Trichloroethene	79-01-6	249 J	170	8 5 U	8 5	11.8 J	85	0 34 U	0 34	42 U	42	85 U	85
Vinyl chlonde	75-01-4	130 U	130	65 U	65	65U	6.5	0 26 U	0 26	32 U	3 2	65 U	85
Xylenes, Total	1330-20-7	420 U	420	21 0 U	21 0	21 0 U	21 0	0 84 U	0 84	10 5 U	10 5	151	21 0
Semi-Volatile Organic Compounds (USEPA	Method 8270C)					 				-			
Date Prepared		3/19/2014	T	3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014	
Date Analyzed		3/28/2014		3/28/2014		3/27/2014		3/27/2014		3/27/2014		3/28/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	\Box	(ug/L)	
1,2-Dichlorobenzena	95-50-1	2.9 J	0 55	0.55 U	0 55	2.2 J	0 55	23 J	0.55	4.1 J	0.55	52,9 J	27 5
1,3-Dichlorobanzana	541-73-1	0 94 U	0 94	1.5 J	0 94	0 94 U	0.94	0 94 U	0 94	4.3 J	0 94	47 O U	47 0
1,4-Dichlorobenzene	106-46-7	6.8 J	0 69	5.1 J	0 69	7.0 J	0.69	1.5 J	0 69	37.9	0 69	259 J	34 5
2,4-Dimethylphenol	105-67-9	11U	11	11U	11	1 1 U	11	1 1 U	11	1 1 U	11	91.3 J	53 0
2-Chlorophenol	95-57-8	98.7	0 93	1.6 J	0 93	2.9 J	0 93	0 93 U	0 93	3.0 J	0 93	46 5 U	46 5
2-Methylnaphthalene	91-57-6	1.0 J	0 50	0 50 U	0.50	0 50 U	0.50	0.50 U	0 50	0 50 U	0 50	25 O U	25 0
2-Methylphenol	95-48-7	1.3 J	0 88	0 86 Ü	0 88	-088 U	0.88	0 88 U	0 88	0 88 U	0.88	44 0 U	44 0
3 & 4 Methylphenol	15831-10-4	3.1 J	0 78	078 U	0 78	078 U	0.78	0 78 U	0.78	078 U	0.78	39 0 U	39 0
3,3'-Dichlorobenzidine	91-94-1	20U	20	20U	20	20U	20	20U	2.0	20U	20	102 U	102
4-Chioroenitine	106-47-8	50,8	0.58	176 D	28	3.3 J	0.56	25.0	0 56	3,750 D	28 0	27,000 JD	280

Parameters not listed were not detected in any samples Results in bold Italics denote detections

MDL - Method Detection Limit

NS - Not Sampled

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL)

J - Result is an estimated value

JP - Result is an estimated value, The lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%

D - Compound analyzed at a dilution

JD - Compound analyzed at a dulution, result is an estimated value

Prepared by LAB Date 04/17/2014 Checked by JSI Date 05/12/2014 Reviewed by AWD Date 05/21/2014

Table 1 Summary of Validated Groundwater Sample Data - Organics (March 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solutia Inc. - Sauget, Illinois

A4 14		BWMW-1S	MDL	BWMW-1M	MDL	Diago de	MDL		MDL	5145 541 514	MDL	D1100110D	MDI
Monitoring Well			MUL		MUL	BWMW-1D-	MUL	BWMW-2S	MDL	BWMW-2M	WIDL	BWMW-2D	MU
Lab Sample ID		60164660017		60164660016		60164660015		60164660014		60164660013		60164860012	
Date Sampled		3/13/2014		3/13/2014		3/13/2014		3/12/2014		3/12/2014		3/12/2014	
Time Sampled		12 05		10 05		11 52		14 21		10 00		10 25	
Organochlorine Pesticides (USEPA Metho	d 8081A).		•		•				•				
Date Prepared		3/18/2014		3/18/2014		3/18/2014		3/18/2014		3/18/2014		3/18/2014	
Date Analyzed		3/25/2014	_	3/25/2014		3/25/2014		3/25/2014		3/25/2014		3/25/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
4,4'-DDE	72-55-9	0 050 U	0 050	0 050 U	0 050	0 050 U	0.050						
4,4'-DDT	50-29-3	0 050 U	0 050	0 050 U	0 050	0.061 JP	0,050						
delta-BHC	319-86-8	0 025 U	0 025	0 025 U	0 025	0 025 U	0 025						
Dieldrin	60-57-1	0 050 U	0 050	0 050 U	0 050	0.52	0 050						
Endosulfan I	959-98-8	0 025 U	0 025	0 025 U	0 025	0.052	0 025						
Endosulfan sulfate	1031-07-8	0 050 U	0 050	0 050 U	0 050	0.081 JP	0 050						
gamma-Chiordane	5103-74-2	0 029 U	0 029	0 029 U	0 029	0.029 JP	0 029						
Heptachlor epoxide .	1024-57-3	0 025 U	0 025	0.045 JP	0 025	0 025 U	0 025	0 025 U	0 025	0.056 JP	0 025	0.12 JP	0 025
Chlorinated Herbicides (USEPA Method 8	151A)		-	•		٠ .	-			-			
Date Prepared		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014	
Date Analyzed		3/22/2014		3/22/2014		3/22/2014		3/22/2014		3/22/2014		3/22/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
Dichtorprop	120-36-5	4.0	0.57	0 16 U	0 16	0 17 U	0 17	0.19 J	0 17	0 66 U	0.66	0 62 U	0.62
Total Organic Carbon (USEPA Method 906	10/SM 5310C)~~						-						
Date Analyzed		4/2/2014		4/2/2014	I	3/19/2014		3/19/2014		4/2/2014		4/3/2014	
Analyte	CAS No.	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Total Organic Carbon (TOC)	7440-44-0	22.3	25	4.3	0.50	4.7	0.50	19.6	25	15.8	50	132	50

Parameters not listed were not detected in any samples Results in bold italics denote detections

MDL - Method Detection Limit

NS - Not Sampled Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL)

J - Result is an estimated value

JP - Result is an estimated value, The lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%

D - Compound analyzed at a dilution.

JD - Compound analyzed at a dilution, result is an estimated value

Prepared by LAB Date 04/17/2014 Checked by JSI Date 05/12/2014 Reviewed by AWD Date 05/21/2014

Table 1 Summary of Validated Groundwater Sample Dat - Organics (March 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solutio Inc. - Souget, Illinois

					. —				_				
Monitoring Well		BWMW-3S	MDL	BWMW-3M	MDL	1 BWMW-3D	MDL	BWMW-4S	MDL	BWMW-4M	MDL	BWMW-4D	MDL
Lab Sample ID		60164660007		60164660006		60164660005		NS		60164660003		60164660004	
Date Sampled		3/11/2014		3/11/2014		3/11/2014		NS		3/10/2014		3/10/2014	
Time Sampled		11 56		10 20		12 30		NS		13 20		14 10	
Volatile Organic Compounds (USEPA Met)	rod 8260B) ·							T					
Date Prepared													
Date Analyzed		3/20/2014		3/20/2014		3/20/2014		NS		3/22/2014		3/20/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
1,1-Dichloroethene	75-35-4	1 0 U	_ 10	10 0 U	100	50 U	50	NS		0 20 U	0 20	5.6 J	20
1,2-Dichloroethane	107-06-2	0 60 U	0 60	60 U	60	30 U	30	NS		0.45 J	0 12	1 2 U	12
2-Butanone	78-93-3	30 U	30	29 5 U	29 5	14 8 U	148	NS		0 59 U	0.59	59 U	59
Acetone	67-64-1	94U	94	94 C U	940	47 0 U	47 0	NS	-	19U	19	18 B U	188
Benzene	71-43-2	16.6	0 30	372	30	205	15	NS		0.78 J	0 060	38.9	0 60
Chlorobenzene	108-90-7	168	1.0	4,630	105	3,100	5 2	NS		133	0 21	1,800	21
Chloromethane	74-87-3	5.6	0 40	12.9 J	40	20U	20	NS		0 080 U	0 080	0 80 U	0.80
cis-1,2-Dichloroethene	156-59-2	0 40 U	0.40	40 U	40	20U	20	NS		1.1	0 080	0 80 U	0 80
Ethylbenzene	100-41-4	0 90 U	0 90	900	90	8.4 J	45	NS		0 18 U	0 18	1 8 U	18
Toluene	108-88-3	0 85 U	0 85	85 U	8.5	42 U	42	NS		0.82 J	0 17	17U	17
Trichloroethene	79-01-6	0 85 U	0 85	85 U	8.5	42 U	42	NS		0 17 U	0 17	17U	17
Vinyl chlonde	75-01-4	0 65 U	0 65	6 5 U	6.5	3 2 U	32	NS		0.17 J	0 13	1 3 U	13
Xylenes, Total	1330-20-7	210	2 1	21 O U	21 0	10.5 U	10.5	NS		0 42 U	0 42	4 2 U	42
Semi-Volatile Organic Compounds (USEP/	Method 8270C)									•			,
Date Prepared		3/17/2014		3/17/2014		3/17/2014		NS		3/17/2014		3/17/2014	
Date Analyzed		3/26/2014		3/26/2014		3/26/2014		NS		3/26/2014		3/28/2014	
Analyte	CAS No.	(ug/L)		(ug/L)	_	(ug/L)		(ug/L)		(ua/L)		(ug/L)	
1,2-Dichlorobenzana	95-50-1	1.7 J	0 55	1.1 J	0 55	44.7	0 55	NS		3,6 J	0 55	157 D	55
1,3-Dichlorobenzene	541-73-1	0 94 U	0 94	4.8 J	0 94	3.9 1	0 94	NS		1.7 J	0 94	18.2	0 94
1,4-Dichlorobenzene	108-46-7	47 J	0 69	9.9 J	0.69	85.9	0.69	NS		10.7	0 69	75.0	0 69
2,4-Dimethytohenol	105-67-9	11U	11	110	11	11U	11	NS		11U	11	110	11
2-Chlorophenol	95-57-8	0 93 U	0 93	0 93 U	0 93	0 93 U	0 93	NS		0 93 U	0 93	0 93 U	0 93
2-Methylnephthelene	91-57-6	0.50 U	0.50	0.50 U	0.50	0 50 U	0.50	NS		0 50 U	0.50	0.50 U	0.50
2-Methylphenol	95-48-7	0 88 U	0.88	0 88 U	0.88	0 88 U	0.88	NS	-	0 88 U	0 88	0 88 U	0.88
3 & 4 Methylphenol	15831-10-4	078U	0.78	. 078 U	0 78	0 78 U	0.78	NS		0 78 U	0 78	078 U	0.78
3,3'-Dichlorobenzidine	91-94-1	200	20	20U	20	2 U	20	NS NS	-	200	20	20U	20
4-Chloroaniline	106-47-8	10.9 J	0.56	5,880 D	56 0	10,800 D	112	NS		30.0	0.58	1.990 JD	56 0
Phenol	108-95-2	0 51 U	0.51	0.51 LJ	0.51	0.51 U	0.51	NS NS	-	0.51 U	0.51	0.51 U	0.51
		Perminators and het				,-							

Parameters not listed were not detected in any samples

Results in **bold italics** denote detections MDL - Method Detection Limit

NS - Not Sampled

Flags and Qualiflers

U - Analyte was not detected at or above the Method Detection Limit (MDL)

J - Result is an estimated value

JP - Result is an estimated value, The lower of the two values is reported when the % difference between the results of two GC

columns is greater than 40%

D - Compound analyzed at a dilution

JD - Compound analyzed at a dilution, result is an estimated value

 Prepared by LAB
 Date 04/17/2014

 Checked by JSI
 Date 05/12/2014

 Reviewed by AWD
 Date 05/21/2014

Table 1 Summary of Validated Groundwater Sample Data - Organics (March 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solutia Inc. - Sauget, Illinois

									_				
Monitoring Well		BWMW-3S	MDL	BWMW-3M	MDL	- BWMW-3D	MDL	BWMW-4S	MDL	BWMW-4M	MDL	BWMW-4D	MDL
Lab Sample ID		60164660007		60164660006		60164660005		NS		60164660003		60164860004	
Date Sampled		3/11/2014		3/11/2014		3/11/2014		NS		3/10/2014		3/10/2014	
Time Sampled		11 58		10 20		12 30		NS		13 20		14 10	
Organochiorine Pesticides (USEPA Me	thod 8081A) -												-
Date Prepared		3/14/2014		3/14/2014		3/14/2014		NS		3/14/2014		3/14/2014	
Date Analyzed		4/1/2014		4/1/2014		4/1/2014		NS		4/1/2014		4/1/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
4,4'-DDE	72-55-9	0 050 U	0.050	0 050 U	0 050	0.59 J	0 50	NS		0.060 J	0 050	0.10	0 050
4,4'-DDT	50-29-3	0 050 U	0 050	0.091 J	0 050	0 50 U	0 50	NS		0 050 U	0 050	0 050 U	0 050
delta-BHC	319-86-8	0 025 U	0 025	0 025 U	0 025	0 25 U	0 25	NS		0 025 U	0 025	0.047 J	0 025
Dieldrin	60-57-1	0 050 U	0 050	0 050 U	0 050	0 50 U	0.50	NS		0.050 U	0 050	0 050 U	0 050
Endosulfan i	959-98-8	0 025 U	0 025	0 025 U	0 025	0 25 U	0 25	NS		0 025 U	0 025	0 025 U	0 025
Endosulfan sulfate	1031-07-B	0 050 U	0 050	0.10	0 050	0.88 J	0 50	NS		0 050 U	0 050	0.10	0 050
gemma-Chiordane	5103-74-2	0 029 U	0 029	0.10	0 029	0 29 U	0 29	NS		0 029 U	0 029	0.087	0 029
Hectachior epoxide	1024-57-3	0 025 U	0 025	0 025 U	0 025	0 25 U	0 25	NS		0 025 U	0 025	0 025 U	0 025
Chlorinated Herbicides (USEPA Metho	d 8151A)		•		• •					•		-	
Date Prepared		3/14/2014		3/14/2014		3/14/2014		NS		3/14/2014		3/13/2014	
Date Analyzed		3/18/2014		3/18/2014		3/18/2014		NS		3/18/2014		3/18/2014	
Analyta	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
Dichlorprop	120-36-5	0 15 U	0 15	0 17 U	0 17	0 16 U	0 16	NS		0 16 U	0 16	0 16 U	0 16
Total Organic Carbon (USEPA Method	9060/SM 5310C)		1	-		-	-		•				
Date Analyzed		3/19/2014		3/19/2014		3/19/2014		NS		3/18/2014		3/19/2014	
Analyte	CAS No.	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Total Organic Carbon (TOC)	7440-44-0	7.9	0.50	26.1	2 5	33.6	25	NS		2.6	0.50	4.9	0 50
	-												

Parameters not listed were not detected in any samples

Results in **bold italics** denote detections

MDL - Method Detection Limit NS - Not Sampled

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL)

J - Result is an estimated value

JP - Result is an estimated value, The lower of the two values is reported when the % difference between the results of two GC columns is greater than 40%

D - Compound analyzed at a dilution

JD - Compound analyzed at a dilution, result is an estimated value

 Prepared by LAB
 Date 04/17/2014

 Checked by JSI
 Date 05/12/2014

 Reviewed by AWD
 Date 05/21/2014

Table 2 Summary of Validated Groundwater Sample Data - Inorganics (March 2014 Sampling Event) Site R Quarterly Groundwater Monitoring Solutia Inc. - Sauget, Illinois

		_											$\overline{}$
Monitoring Well		BWMW-1S	MDL	BWMW-1M	MDL	BWMW-1D	MDL	BWMW-2S	- MDL	BWMW-2M	MDL	BWMW-2D	MDL
Lab Sample ID		60164660017		60164660016		60164660015		60164660014		60164660013		60164660012	
Date Sampled		3/13/2014		3/13/2014		3/13/2014		3/12/2014		3/12/2014		3/12/2014	
Time Sampled		12 05		10 05		11 52		14 21		10 00		10 25	
Mercury (USEPA Method 7470A)													
Date Prepared		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014	
Date Analyzed		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014	
Analyte	CAS No.	(ug/L)											
Mercury	7439-97-8	0 022 U	0 022	0 022 U	0.022								
Metals (USEPA Method 6010B)								-					
Date Prepared		3/17/2014		3/17/2014		3/17/2014		3/17/2014		3/17/2014		3/17/2014	\bot
Date Analyzed		3/24/2014		3/24/2014		3/24/2014		3/24/2014		3/24/2014		3/24/2014	<u></u>
Analyte	CAS No.	(ug/L)		(ug/L)	_	(ug/L)		(ug/L)		(ug/L)		(ug/L)	
Arsenic	7440-38-2	103	34	4.7 J	34	5.0 J	3.4		34	4.8 J	34	6.7 J	34
Barium	7440-39-3	255	0 61	466	0 61	397	0 61		0.61	839	0 61	1,990	0 61
Chromium	7440-47-3	1.9 J	0 89	2.2 J	0.89	1.6 J	0.89		0 89	6.3	0 89	1.4 J	0.89
Copper	7440-50-8	0 85 U	0 85	0 85 U	0 85	0.88 J	0 85	1.1 J	0 85	1.0 J	0 85	0 85 U	0 85
Lead	7439-92-1	3.0 J	22	22 U	22	2 2 U	22	2.2 J	22	2 2 U	22	22 U	22
Nickel	7440-02-0	1.8 J	0 95	1.4 J	0 95	1.1 J	0 95	1.2 J	0 95	4.8 J	0 95	5.6	0 95
Total Dissolved Solids (USEPA Metho	d 160.1/SM 2540C)												
Date Analyzed		3/18/2014		3/14/2014		3/18/2014		3/18/2014		3/18/2014		3/18/2014	
Analyte	CAS No.	(mg/L)											
Total Dissolved Solids (TDS)	-	1,540	50	948	50	1,040	50	1,400	50	937	50	1,750	50

Parameters not listed were not detected in any samples Results in bold italics denote detections

MDL - Method Detection Limit

NS - Not Sampled

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL)
J - Result is an estimated value

Prepared by LAB Checked by JSI Reviewed by AWD Date 04/17/2014 Date 05/12/2014 Date 05/21/2014

Table 2 Summary of Validated Groundwater Sample Data - Inorganics (March 2014 Sampling Event) Site R Querterly Groundwater Monitoring Solutia Inc. - Sauget, Illinois

											·		
Monitoring Well		BWMW-3S	'MDL	BWWW-3M	MDL-	BWMW-3D	- MDL	BWMW-4S	MDL	BWMW-4M	MDL	BWMW-4D_	MDL
Lab Sample ID		60164660007		60164660006		60164660005		NS		60164660003		60164660004	
Date Sampled		3/11/2014		3/11/2014		3/11/2014		NS		3/10/2014		3/10/2014	ldot
Time Sampled		11 56		10 20		12 30		NS		13 20		14 10	
Mercury (USEPA Method 7470A)	•					• •							
Date Prepared		3/19/2014		3/19/2014		3/19/2014		NS		3/19/2014		3/19/2014	
Date Analyzed		3/19/2014		3/19/2014		3/19/2014		NS		3/19/2014		3/19/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
Mercury	7439-97-6	0 022 U	0 022	0 022 U	0 022	0 022 U	0 022	NS NS		0 022 U	0 022	0 022 U	0 022
Metals (USEPA Method 6010B)		1						<u>_</u>					
Date Prepared	-	3/13/2014		3/13/2014		3/13/2014		NS		3/13/2014		3/13/2014	
Date Analyzed		3/14/2014		3/14/2014		3/14/2014		NS		3/14/2014		3/14/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
Arsenic	7440-38-2	67 U	67	34 U	34	34 U	34	NS		3 4 U	34	34 U	34
Banum	7440-39-3	304	0 61	740	0.61	1,080	0 61	NS		417	0 61	131	0 61
Chromium	7440-47-3	0 89 U	0.89	0 89 U	0 89	0 89 U	0.89	NS		0.89 U	0 89	0.89 U	0 89
Copper	7440-50-8	2.9 J	0 85	0 85 U	0 85	0.88 J	0.85	NS _		0 85 U	0 85	0 85 U	0 85
Lead	7439-92-1	22U	22	26 J	22	2 2 U	22	NS		22 U	22	2 2 U	22
Nickel	7440-02-0	1.0 J	0 95	4.3 J	0 95	28 J	0 95	NS		2.3 J	0 95	3.2 J	0 95
Total Dissolved Solids (USEPA Method 16	0.1/SM 2540C)	-											-
Date Analyzed		3/18/2014		3/18/2014		3/18/2014		NS _		3/14/2014		3/14/2014	
Analyte	CAS No.	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Total Dissolved Solids (TDS)	•	1,650	50	1,310	50	1,180	50	NS		748	50	726	50

Parameters not listed were not detected in any samples. Results in bold italics denote detections

MDL - Method Detection Limit

NS - Not Sampled

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL) J - Result is an estimated value

Prepared by: LAB Date 04/17/2014 Checked by JSI Date 05/12/2014 Reviewed by AWD Date 05/21/2014

Table 3 Summary of Validated Groundwister Sample Date - Organics (March 2014 Sampling Event) Site R Quartity Groundwister Monitoring Scalate Inc. - Sauget, Ulinois

											MDL		MOL	Pr	MDL	T O	MDI
Monitoring Wall		DUP 1	MDL	DUP 2	MOL		MDL	RB 2	MDL	FB 1	MUL	FB 2	MUL	Trip Blank	MILL	Trip Blank	MIDI
Lab Sample ID		60164660008		6018498002D		60164680018	-	60184680018	-	80164660009		60164680021		60164880010		60184860022	+
Date Sampled		3/10/2014		3/13/2014		3/12/2014		3/13/2014		3/11/2014		3/13/2014	_	3/11/2014	انا	3/13/2014	ب جا
Time Sampled		·		<u> </u>		14 50		13 40		12.45		10 45				<u> </u>	4
Voletile Organic Compounds (USEPA Meth	od 8260E)																
Date Analyzed		3/22/2014		3/26/2014		3/21/2014		3/26/2014		3/20/2014		3/26/2014		3/19/2014		3/26/2014	
Analyta	CAS No.	(ug/L)		(ug/L)				(ug/L)		(1/40)		(ug/L)		(ug/L)		(ug/L)	
1,1-Dichloroethene	75-34-3	0 18 J	0 050	0 050 U	0 050		0.050	0 050 U	0.050	0 050 U	0 050	0 050 U	0 050	0 050 U	0 050	0 050 U	0.050
1,1-Dichloroethene	75-35-4	0 20 U	0 20	0 20 U	0 20	0 20 U	0 20	0 20 U	0.20	0 45 J	0 20	0.20 U	0.20	10 U	0 20	0 20 U	0.20
1,2-Dichloroethane	107-08-2	0.29 J	0 12	0 12 U	0 12	0 12 U	0 12	0 12 U	0 12	0 12 U	0 12	0 12 U	0 12	0 12 U	0 12	0 12]U	0 12
Acetone	67 -64- 1	19U	19	20 J	19	3.2 J	19	87 J	19	23 J	19	4.0 J	19	1 9 U	18	19 U	18
Benzene	71-43-2	0,67 J	0 080	48.6	080	0 060 U	0 060	0 15 J	0.060	0 060 U	0 060	0 060 U	0.080	0 060 U	0 080	0 060 U	0.080
Chlorobenzene	108-90-7	131	0 21	6,600 D	105	078 J	0 21	38.9	0 21	0 21 U	0 21	0 21 U	0.21	0.21	0 21	021U	0.25
cis-1,2-Dichloroethere	156-59-2	11	0 060	021 J	0 080	0.080 U	0.080	0 080 U	0.080	0 080 U	0 080	0 080 U	0.080	0 080 U	0.080	0 080 U	0.080
Bhylbenzene	100-41-4	0 16 U	0.18	0 64 1	0 16	0 18 U	0 18	0 18 U	0 18	0 18 U	0 18	0 18 U	D 18	0 18 U	0 18	0 18 U	0.18
Toluene	108-88-3	0.18 J	0 17	0.26 J	0 17	0.18 J	0 17	0.32 J	0 17	100	0 17	0.31 J	0 17	0 17 U	0 17	0 17 U	0 17
Trichiorpethene	79-01-8	0 17 U	0 17	100	0 17	0 29 J	0 17	10U	0 17	044 J	0 17	10U	0 17	0 17 U	0 17	100	0 17
Semi-Volatile Organic Compounds (USEPA		J J				<u> </u>		, -,-		V 1.1 U						v - 1	•
Date Prepared		3/17/2014	$\overline{}$	3/18/2014		3/19/2014	- 1	3/19/2014		3/17/2014		2/19/2014		1, 1,		, i -	- 1.4
Date Analyzed		3/28/2014		3/28/2014		3/28/2014		3/28/2014		3/26/2014		3/28/2014				40 .	. ''4
Analyte	CAS No.	(up/L)		(ug/L)		(us/L)		(ug/L)	1	(ug/L)		(ug/L)			.C		` . '
1.2-Dichloroberzene	95-50-1	3,5 J	0.55	2.4 J	0 55	0 55 U	0 55	0 55 U	0 55	0 55 U	0 55	0 55 U	0 55	,	•	٠,	, ,
1.3-Dichloroberzene	541-73-1	19 J	0 94	0 94 U	0.84	0 94 U	0.94	0.941U	094	0 94 U	0.94	0 94 U	0 94			-	
1.4-Dichloroberzene	106-46-7	10,3	0.69	8.1 J	0 69	0 69 U	0 69	0 69 U	0.69	0 88 U	0.69	0 69 U	0.69				•
2-Chiorephenol	95-57-8	0 93 U	0.93	37 J	0.93	0 93 U	0.83	0.93 U	0 93	0 93 U	0 93	0.93 U	0 93	•			
4-Chiorogniline	106-47-8	24,5	0.56	3.1 J	0.56	0.58 U	0.56	0 56 U	0.56	0.56 U	0 56	0.56 U	0.56			•	٠.
Nachthalene	91-20-3	0 58 U	0.58	20 J	0.58	0 58 U	0.58	058 U	0 58	0 58 U	0.58	0 58 U	0.58				•
Organochiorine Pesticides (USEPA Method	8081A)													•		•	
Date Prepared		3/14/2014		3/18/2014		3/18/2014		3/18/2014		3/14/2014		3/18/2014				,	٠.
Date Analyzed		4/1/2014	\neg	3/25/2014		3/25/2014		3/25/2014	$\overline{}$	4/1/2014		3/25/2014		٠,	٠	•	آر برو
Analyte	CAS No.	(ug/L)		(ug/L)		(up/L)		(ug/L)		(Up/L)	$\neg \neg$	(ug/L)					٠, ١
4.4'-DDE	72-55-8	0 068 J	0.050	0 050 U	0.050	0 050 U	0 050	0 050 U	0.050	0 050 U	0.05	0 050 U	0.050	'	•		
delta-BHC	319-86-8	0 045 J	0 025	0 025 U	0 025	0.025 U	0 025	0 025 U	0 025	0 048 J	0 048	0 025 U	0 025			- '	
Chloringted Herbicides (USEPA Nethod 815	1A)													. 7			
Date Prepared		3/14/2014		3/19/2014		3/19/2014		3/19/2014	$\neg \neg$	3/14/2014		3/10/2014				_	
Date Analyzed		3/18/2014		3/22/2014		3/22/2014		3/22/2014		3/18/2014		3/22/2014					
Analyto	CAS No.	(ug/L)	1	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)				-	•
Total Organic Curbon (USEPA Method 9060	/SM 5310C)															,	-
Date Analyzad		3/19/2014		3/19/2014		4/2/2014		4/2/2014		3/19/2014		4/2/2014				١.	-
Anglyte	CAS No	(mg/L)	1	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)			-		. ••1
	7440-44-0				0 50						0.50	054 J	0.50				

| 2.0 | 0.50 | 4.0 | 0.50 | 0.72 | J |
Parameters not libited were not detected in any samples.
Results in bodd Italics denote detections,
MDL - Method Detection Limit
NS - Not Sampled
Flags and Qualifiers
U - Analyte was not about at or above the Method Detection Limit (MDL)
J - Result is an estimated value
D - Compound analyzed at a dilution

Prepared by LAB Checked by JSI Reviewed by AWD Osta 04/17/2014 Data 05/12/2014 Data 05/21/2014

Table 4 Summary of Validated Groundwater Sample Data - Inorganics (March 2014 Sampling Event) Site R Quarterly Groundwater Monttoring Solutia Inc. - Sauget, Illinois

		1.									_		
Monitoring Well		DUP 1	MDL	DUP 2	MDL	RB 1	MDL'	RB 2	MDL	FB 1	MDL	FB 2	MDL
Lab Sample ID		60164660008		60164660020		60164660018		60164660019	L .	60164660009		60164660021	
Date Sampled		3/10/2014		3/13/2014		3/12/2014		3/13/2014		3/11/2014		3/13/2014	
Time Sampled		STATE OF THE PARTY				14 50		13 40		12 45		10 45	
Mercury (USEPA Method 7470A)				•									
Date Prepared		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014	
Date Analyzed		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014		3/19/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(uĝ/L)	
Mercury	7439-97-6	0 022 U	0 022	0 022 U	0 022	0 022 U	0 022	0 022 U	0 022	_ 0 022 U	0 022	0 022 U	0 022
Metals (USEPA Method 6010B)								_	-				-
Date Prepared		3/13/2014		3/17/2014		3/17/2014		3/17/2014		3/13/2014		3/17/2014	
Date Analyzed		3/14/2014		3/24/2014		3/24/2014		3/24/2014		3/14/2014		3/24/2014	
Analyte	CAS No.	(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)		(ug/L)	
Arsenic	7440-38-2	3 4 U	34	4.1 J	34	3 4 U	34	34 U	34	34 U	3.4	34U	34
Banum	7440-39-3	414	0 61	404	0 61	0 61 U	0 61						
Chromium	7440-47-3	0 89 U	0.69	1.8 J	0 89	0 69 U	0.89	0 89 U	0.89	0 89 U	0 69	0 89 U	0 89
Nickei	7440-02-0	1.3 J	0 95	1.3 J	0 95	0 95 U	0 95						
Total Dissolved Solids (USEPA Method 16	0.1/SM 2540C)											•	
Date Analyzed -		3/14/2014		3/20/2014		3/18/2014		3/18/2014		3/18/2014		3/20/2014	
Analyte	CAS No.	(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)		(mg/L)	
Total Dissolved Solids (TDS)	-	742	50	1070	50	50 U	50	50U	50	50U	50	50 U	50

Parameters not listed were not detected in any samples Results in bold Italics denote detections

MDL - Method Detection Limit

NS - Not Sampled

Flags and Qualifiers

U - Analyte was not detected at or above the Method Detection Limit (MDL) J - Result is an estimated value

Prepared by LAB Checked by JSI Reviewed by AWD Date 04/17/2014 Date 05/12/2014 Date 05/21/2014

APPENDIX B

DATA VALIDATION REPORT

1.0 INTRODUCTION

Golder Associates Inc. (Golder) validated the analytical data for the groundwater samples collected from March 10, 2014 through March 13, 2014 at Solutia Site R in Sauget, Illinois (Site) Samples were collected from a total of eleven (11) of the twelve (12) on-site groundwater monitoring wells. Field duplicate samples were collected from wells BWMW-4M and BWMW-1D Two equipment rinsate blanks, two field blanks, and two trip blanks were prepared and shipped for laboratory analysis. The samples collected for analysis are summarized in Table 1. The samples were submitted to Pace Analytical Services, Inc. (Pace Analytical) of Florissant, Missouri which shipped the samples to be analyzed for volatile organic compounds, semi-volatile organic compounds, total metals, chlorinated pesticides, and general chemistry parameters that night to Lenexa, Kansas via courier. The samples to be analyzed for chlorinated herbicides were shipped for next day delivery to the TestAmerica Savannah, Georgia facility by the Pace Analytical Service Center in Florissant, Missouri. The samples were placed into one sample delivery group (SDG) by the laboratory. The SDG is 60164660

The samples were collected and analyzed in accordance with the <u>Field Sampling Plan for the Groundwater Migration Control System</u>, <u>Sauget Area 2 Superfund Site</u> (FSP; URS, January 2003). Samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), chlorinated pesticides, chlorinated herbicides, total metals, and general chemistry parameters. The general chemistry parameters were total organic carbon (TOC) and total dissolved solids (TDS). Analytical methods used are from U.S. Environmental Protection Agency (USEPA) document SW-846, <u>Test Methods for Evaluating Solid Waste</u>, Revision 6 contained in Final Update III August 2002 and listed below:

- VOCs were analyzed using <u>Method 8260B Volatile Organic Compounds by Gas</u> Chromatography/Mass Spectrometry
- SVOCs were analyzed by <u>Method 8270C Semi-volatile Organic Compounds by Gas Chromatography/Mass Spectrometry</u>
- Chlorinated Pesticides were analyzed using <u>Method 8081A Organochlorine Pesticides by</u>
 <u>Gas Chromatography</u>
- Chlorinated Herbicides were analyzed using <u>Method 8151A Chlorinated Herbicides by GC</u>
 <u>Using Methylation or Pentafluorobenzylation Derivatization</u>
- Total metals were analyzed in accordance with <u>Method 6010B Inductively Coupled Plasma-Atomic Emission Spectrometry</u> except for mercury, which was analyzed by <u>Method 7470A, Mercury in Liquid Waste (Manual Cold Vapor Technique)</u>
- The general chemistry parameters were analyzed using standard SW-846 methodologies and EPA methodologies contained in <u>Methods for Chemical Analysis of Water and Wastes</u>, March 1983

063-9678	-2-	May 2014
on of Section 0.2 of the Quality	llowing the general guideline	Data validation was performed (
	•	Data validation was performed for the Grant Project Plan for the Grant
	·	Site (QAPP, URS, January 2003 national data validation guideline
onal Guidelines for Organic Data		 USEPA Contract Laboration Review, EPA-540-R-08-0
al Guidelines for Inorganic Data		USEPA Contract Laborate Review, EPA 540-R-04-06
	_	These documents are hereafter rebetween the functional guidelines
•	sed. SDG (60164660) was p	the method-specific criteria were package containing quality control
•	· ·	Data qualifiers are defined in Table
ere more than one qualifier for a	ection limit (inorganics) Whe	not qualified and non-detected re quantitation limit (organics) or de sample result was warranted, the r
•	•	Sections 2 through 7 summarize the
les for which qualification occurred. to quality control criteria is slight,	elines, if the non-adherence	
	•	significant, qualification and rejection
tables, which are included in the	ied data were summarized ın	Following data validation, the qua main body of the report.

2.0 VOLATILE ORGANIC COMPOUNDS

Samples were collected from eleven (11) groundwater monitoring locations and analyzed for VOCs. Field duplicate samples were collected from wells BWMW-4M and BWMW-1D. Two equipment rinsate blanks, two field blanks, and two trip blanks were prepared and shipped for laboratory analysis. The samples collected for analysis are summarized in Table 1. The samples were submitted to Pace Analytical Services, Inc., were placed into one data package or SDG (60164660), and were prepared and analyzed using SW-846 Method 8260B. Samples were validated in general accordance with the functional guidelines. Results of the validation are summarized below

2.1 Data Quality Objectives

Precision: Goals for laboratory and field precision were met.

Accuracy: Goals for accuracy were met.

Sample Result Verification: Sample results were supported in the raw data.

<u>Detection Limits:</u> The detection limit goals were achieved for analyses, except where dilutions were required due to elevated levels of target/non-target analytes or matrix interference.

<u>Completeness:</u> The data packages were complete for requested analyses. Nineteen (19) samples were reviewed in this data set. A total of 646 groundwater results were reported of which all were deemed valid. This results in a laboratory completeness of 100%; with an overall completeness of 100%.

2.2 Major Concerns

There were no major concerns that required rejection of data.

2.3 Minor Concerns

Identified below are the minor quality control concerns that required qualification of the data. Refer to Table 3 for the specific samples affected by each concern.

Reported results with a value greater than the method detection limit (MDL) and lower than the reporting limit (RL) were qualified with estimated values (J).

When a compound was detected in a blank (i.e method, field, rinsate) the five times (ten times for common lab contaminants) rule was applied to affected samples. Results greater than the method detection limit and below five or ten times the blank detection were qualified as non-detects (U)

The sample results must agree within 50% RPD of each other, positive results were qualified as estimated values (J) and non-detected results were qualified with estimated reporting limits (UJ).

May 2014	-4 -	063-9678
When a sample was analyz	zed at a dilution, positive affected results v	vere qualified (D/DJ).

Golder Associates

May 20	014	-5-	063-9678
3.0 SE	EMI-VOLATILE ORGANIC	COMPOUNDS	
SVOC: equipm The sa Pace A	s Field duplicate samples nent rinsate blanks and two fi amples collected for analysis Analytical Services Inc., were ed and analyzed using SW	were collected from well- eld blanks were prepared are summarized in Table placed into one data pace 7-846 Method 8270C.	onitoring locations and analyzed for a BWMW-4M and BWMW-1D. Two and shipped for laboratory analysis. In the samples were submitted to ckage or SDG (60164660), and were Samples were validated in general dation are summarized below.
3.1	Data Quality Objectives		
Precisi	on: Goals for laboratory and f	ield precision were met, e	xcept where noted below.
<u>Accura</u>	ncy: Goals for accuracy were	met, except where noted b	elow.
<u>Sample</u>	e Result Verification: Sample	results were supported in	the raw data
	ion <u>Limits:</u> The detection limited due to elevated levels of tar		analyses, except where dilutions were ference.
sample all we	es were reviewed in this data	set. A total of 1,088 groun	equested analyses. Seventeen (17) dwater results were reported of which pleteness of 100%; with an overall
3.2	Major Concerns		
There	were no major concerns that	required rejection of data	
3.3	Minor Concerns		
	ed below are the minor qualit le 4 for the specific samples a		quired qualification of the data. Refer
•	ted results with a value grea		ction limit (MDL) and lower than the
	e were two or more surrogate ualified (J).	e compounds diluted out	of a sample, positive affected results
When	a sample was analyzed at a d	dilution, positive affected r	esults were qualified (D/JD)

4.0 CHLORINATED PESTICIDES

Samples were collected from eleven (11) groundwater monitoring locations and analyzed for chlorinated pesticides. Field duplicate samples were collected from wells BWMW-4M and BWMW-1D. Two equipment rinsate blanks and two field blanks were prepared and shipped for laboratory analysis. The samples collected for analysis are summarized in Table 1. The samples were submitted to Pace Analytical Services, Inc., were placed into one data package or SDG (60164660), and were prepared and analyzed using SW-846 Method 8081. Samples were validated in accordance with the functional guidelines. Results of the validation are summarized below

4.1 Data Quality Objectives

<u>Precision:</u> Goals for laboratory and field precision were met, except where noted below.

Accuracy. Goals for accuracy were met, except where noted below

Sample Result Verification: Sample results were supported in the raw data.

<u>Detection Limits:</u> The detection limit goals were achieved for analyses, except where dilutions were required due to elevated levels of non-target analytes or matrix interference.

<u>Completeness:</u> The data packages were complete for requested analyses. Seventeen (17) samples were reviewed in this data set. A total of 357 groundwater results were reported of which all were deemed valid. This results in a laboratory completeness of 100%; with an overall completeness of 100%.

4.2 Major Concerns

There were no major concerns that required rejection of data.

4.3 Minor Concerns

Identified below are the minor quality control concerns that required qualification of the data. Refer to Table 5 for the specific samples affected by each concern.

Reported results with a value greater than the method detection limit (MDL) and lower than the reporting limit (RL) were qualified with estimated values (J).

If the difference between the values of the GC columns was greater than 40% and the lower value was reported then positive affected results were qualified (P/JP).

May 2014	-7-	063-9678
5.0 CHLORINATED HERE	BICIDES	, <u> </u>
Samples were collected from	m eleven (11) groundwater monitoring	locations and analyzed for
BWMW-1D. Two equipment	d duplicate samples were collected to trinsate blanks and two field blanks we	re prepared and shipped for
were submitted to Pace Anal	nples collected for analysis are summariallytical Services, Inc. who then shipped the Samples were placed into one data p	ne samples to the Savannah,
and were prepared and an	alyzed using SW-846 Method 8151. al guidelines. Results of the validation al	Samples were validated in
5.1 Data Quality Objecti	ives	
Precision. Goals for laborator	y and field precision were met	
Accuracy: Goals for accuracy	were met, except where noted below.	
Sample Result Verification: S	ample results were supported in the raw of	data.
	on limit goals were achieved for analyses s of target analytes or matrix interference.	
samples were reviewed in this	packages were complete for requested s data set. A total of 153 groundwater res results in a laboratory completeness	ults were reported of which all
5.2 Major Concerns		
There were no major concerns	s with the sample analyses to warrant reje	ection of data.
5.3 Minor Concerns		
	r quality control concerns that required q	ualification of the data. Refer
to Table 6 for the specific sam	ples affected by each concern	
•	e greater than the method detection lim	nit (MDL) and lower than the

May 2014	-8-	063-9678
6.0 INORGANICS		
inorganics. Field duplice equipment rinsate blan The samples collected Pace Analytical Service prepared and analyze	ed from eleven (11) groundwater monito cate samples were collected from wells B\ ks and two field blanks were prepared and for analysis are summarized in Table 1. e, Inc., were placed into one data package and using SW-846 methods 6010 and 747 inctional guidelines. Results of the validation	NMW-4M and BWMW-1D Two shipped for laboratory analysis. The samples were submitted to e or SDG (60164660), and were 70. Samples were validated in
6.1 Data Quality C	Objectives	
Precision: Goals for lal	boratory and field precision were met, except	t where noted below
Accuracy Goals for ac	ccuracy were met, except where noted below	•
Sample Result Verification	tion: Sample results were supported in the re	aw data.
<u>Detection Limits.</u> The were found in calibratio	detection limit goals were achieved for aron blanks	nalyses, except where detections
	data packages were complete for request in this data set A total of 170 groundwater. This results in a laboratory completer	results were reported of which all
6.2 Major Concer	ns	
There were no major o	concerns that required rejection of data.	
6.3 Minor Concer	ns	
Identified below are the	e minor quality control concerns that require	d qualification of the data. Refer
to Table 7 for the speci	fic samples affected by each concern.	
•	a value greater than the method detection re qualified with estimated values (J).	n limit (MDL) and lower than the
•	results were qualified with estimated values	•

7.0 GENERAL CHEMISTRY

Samples were collected from eleven (11) groundwater monitoring locations and analyzed for TOC and TDS. Field duplicate samples were collected from wells BWMW-4M and BWMW-1D. Two equipment rinsate blanks and two field blanks were prepared and shipped for laboratory analysis. The samples collected for analysis are summarized in Table 1. The samples were submitted to Pace Analytical Service, Inc., were placed into one data package or SDG (60164660), and were prepared and analyzed using SW-846 Method 5310C and 2540C. Samples were validated in accordance with the functional guidelines. Results of the validation are summarized below

7.1 Data Quality Objectives

Precision: Goals for laboratory and field precision were met

Accuracy Goals for accuracy were met

Sample Result Verification: Sample results were supported in the raw data.

<u>Detection Limits.</u> The detection limit goals were achieved for analyses.

<u>Completeness:</u> The data packages were complete for requested analyses. Seventeen (17) samples were reviewed in this data set. A total of 34 groundwater results were reported of which all were deemed valid. This results in a laboratory completeness of 100%; with an overall completeness of 100%.

7.2 Major Concerns

There were no major quality control concerns identified that required rejection of data.

7.3 Minor Concerns

Identified below are the minor quality control concerns that required qualification of the data Refer to Table 8 for the specific samples affected by each concern.

Reported results with a value greater than the method detection limit (MDL) and lower than the reporting limit (RL) were qualified with estimated values (J)

8.0 SUMMARY

Golder validated the data collected during the March 2014 sampling event from Solutia Sauget Site R in general accordance with USEPA functional guidelines. Although some data required qualifications due to quality control criteria that were not achieved, the data were deemed usable. Where a positive result was qualified as estimated, the analyte should be considered present Similarly, a result that was qualified as an estimated reporting limit should be considered not present for the purposes of this program, although the limit itself may not be precise. The completeness for the entire data set was 100%

TABLE 1

SAMPLE POINT IDENTIFICATIONS AND SDG NUMBERS GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE MARCH 2014 GROUNDWATER SAMPLING EVENT

SAMPLE POINT I.D.	DATE SAMPLED	VOLATILE ORGANICS	SEMIVOLATILE ORGANICS	PESTICIDES	HERBICIDES	TOTAL INORGANICS	GENERAL CHEMISTRY
Groundwater Sampl	es						
BWMW-1S	3/13/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-1M	3/13/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-1D	3/13/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-2S	3/12/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-2M	3/12/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-2D	3/12/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-3S	3/11/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-3M	3/11/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-3D	3/11/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-4S	NS	NS	NS	NS	NS	NS	NS
BWMW-4M	3/10/2014	60164660	60164660	60164660	60164660	60164660	60164660
BWMW-4D	3/10/2014	60164660	60164660	60164660	60164660	60164660	60164660
Field Duplicates			· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>
DUP-1	3/10/2014	60164660	60164660	60164660	60164660	60164660	60164660
DUP-2	3/13/2014	60164660	60164660	60164660	60164660	60164660	60164660
Field Blanks				-			
FIELD BLANK 1	3/11/2014	60164660	60164660	60164660	60164660	60164660	60164660
FIELD BLANK 2	3/13/2014	60164660	60164660	60164660	60164660	60164660	60164660
Trip Blanks							
TRIP BLANK	3/11/2014	60164660	60164660	60164660	60164660	60164660	60164660
TRIP BLANK	3/13/2014	60164660	60164660	60164660	60164660	60164660	60164660
Rinsate Blanks							
RINSATE BLANK-1	3/12/2014	60164660	60164660	60164660	60164660	60164660	60164660
RINSATE BLANK-2	3/13/2014	60164660	60164660	60164660	60164660	60164660	60164660

Notes

- 1. General Chemistry included total organic carbon (TOC) and total dissolved solids (TDS).
- 2 MS/MSD performed on sample BWMW-2M.
- 3. NS Not sampled due to well being dry.

Checked by: LAB 4/28/2014 Reviewed by: AWD 5/21/2014

VALIDATION QUALIFIER DEFINITIONS GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE MARCH 2014 GROUNDWATER SAMPLING EVENT

Organics

- U The analyte was analyzed for but not detected.
- J The analyte was detected and the result is considered an estimated value.
- D The analyte was detected at a dilution.
- JD Compound analyzed at a dilution; result is considered an estimated value.
- JP The difference between the values of the GC columns was greater than 40% and the lower value is reported. The result is considered an estimated value.
- P The difference between the values of the GC columns was greater than 40% and the lower value is reported.

Inorganics

- The analyte was analyzed for but not detected.
 considered an estimated value.
- J The analyte was detected and the result is considered an estimated value.

Checked by: LAB 4/28/2014 Reviewed by: AWD 5/21/2014

VOLATILE ORGANIC COMPOUNDS DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE MARCH 2014 GROUNDWATER SAMPLING EVENT

DATE: MARCH 2014

Project No.: 063-9678

PROJECT NAME: Solutia Site R

MATRIX: Groundwater ANALYSIS: VOC

SAMPLE DELIVERY GROUP NUMBERS: 60164660

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	Acetone, Benzene, Chlorobenzene, Ethylbenzene, 1,1-Dichloroethene, 1,1- Dichloroethane, 1,2-Dichloroethane, 2- Butanone, Chloromethane, cis-1-2- Dichloroethene, Trichloroethene, Toluene, and Vinyl chloride	J	BWMW-1S, BWMW-1M, BWMW-1D, BWMW-2S, BWMW-2M, BWMW-2D, BWMW-3M, BWMW-3D, BWMW-4M, BWMW-4D, FB-1, FB-2, RB-1, RB-2, DUP-1, and DUP-2
Detection in a blank (5X rule)	Carbon disulfide, 1,1-Dichloroethene, Toluene and Trichloroethene	U	BWMW-3S, FB-1, FB-2, RB-2, DUP-2, TRIP BLANK (3/11/2014), and TRIP BLANK (3/13/2014)
The RPD between the duplicate and associated sample is greater than 50%	Acetone and Toluene	7	BWMW-1D, BWMW-4M, DUP-1, and DUP-2
Compounds analyzed at a dilution	Chlorobenzene	D/JD	DUP-2

Checked by LAB 4/28/2014 Reviewed by AWD 5/21/2014

SEMI-VOLATILE ORGANIC COMPOUNDS DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE MARCH 2014 GROUNDWATER SAMPLING EVENT

DATE: MARCH 2014

PROJECT NAME: Solutia Site R

MATRIX: Groundwater ANALYSIS: SVOC

SAMPLE DELIVERY GROUP NUMBERS: 60164660

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	4-Chloroaniline, 2-Chlorophenol, 2,4- Dimethylphenol, 2-Methylnaphthalene, 2- Methylphenol, 3&4 Methylphenol, Naphthalene, 1,4-Dichlorobenzene, 1,3-Dichlorobenzene, and 1,2-Dichlorobenzene	J	BWMW-1S, BWMW-1M, BWMW-1D, BWMW-2S, BWMW-2M, BWMW-2D, BWMW-3S, BWMW-3M, BWMW-3D, BWMW-4M, DUP-1, and DUP-2
Two or more surrogates diluted out of sample	4-Chloroantine	J	BWMW-2D
Compounds analyzed at a dilution	4-Chloroaniline and 1,2-Dichlorobenzene	D/JD	BWMW-1M, BWMW-2M, BWMW-2D, BWMW-3M, BWMW-3D, and BWMW-4D

Checked by LAB 4/28/2014 Reviewed by AWD 5/21/2014

Project No. : 063-9678

CHLORINATED PESTICIDES DATA QUALIFIER SUMMARY **GROUNDWATER MIGRATION CONTROL SYSTEM** SAUGET AREA 2 SUPERFUND SITE MARCH 2014 GROUNDWATER SAMPLING EVENT

DATE: MARCH 2014

PROJECT NAME: Solutia Site R **MATRIX:** Groundwater

ANALYSIS: Chlorinated Pesticides
SAMPLE DELIVERY GROUP NUMBERS: 60164660

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	4-4'-DDE, delta BHC, Endosulfan sulfate,	J	BWMW-1M, BWMW-2D, BWMW-3M, BWMW-3D, BWMW-4M, BWMW-4D, FB-1, and DUP-1
The difference between the values of the GC columns was greater than 40% and lower value was reported	4-4'-DDT, Endosulfan sulfate, Heptachlor epoxide, and gamma-Chlordane	P/JP	BWMW-1M, BWMW-2M and BWMW-2D

Checked by LAB 4/28/2014 Reviewed by AWD 5/21/2014

Project No.: 063-9678

CHLORINATED HERBICIDES DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE MARCH 2014 GROUNDWATER SAMPLING EVENT

DATE: MARCH 2014 Project No.: 083-9678

PROJECT NAME: Solutia Site R
MATRIX: Groundwater

ANALYSIS: Chlorinated Herbicides

SAMPLE DELIVERY GROUP NUMBERS: 60164860

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	Dichlorprop	J	BWMW-2S

Checked by LAB 4/28/2014 Reviewed by AWD 5/21/2014

METALS DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE MARCH 2014 GROUNDWATER SAMPLING EVENT

DATE: MARCH 2014

PROJECT NAME: Solutia Site R

MATRIX: Groundwater ANALYSIS: Metals

SAMPLE DELIVERY GROUP NUMBERS: 60164660

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(8)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	Arsenic, Chromium, Copper, Lead, and Nickel	J	BWMW-1S, BWMW-1M, BWMW-1D, BWMW-2S, BWMW-2M, BWMW-2D, BWMW-3S, BWMW-3M, BWMW-3D, BWMW-4M, BWMW-4D, DUP-1, and DUP-2
RPD between the duplicate and associated sample is greater than 50%	Nickel	J	BWMW-4M and DUP-1

Checked by LAB 4/28/2014 Reviewed by AWD 5/21/2014

Project No. : 063-9678

GENERAL CHEMISTRY DATA QUALIFIER SUMMARY GROUNDWATER MIGRATION CONTROL SYSTEM SAUGET AREA 2 SUPERFUND SITE MARCH 2014 GROUNDWATER SAMPLING EVENT

DATE: MARCH 2014 Project No.: 063-9678

PROJECT NAME: Solutia Site R
MATRIX: Groundwater
ANALYSIS: TDS and TOC

SAMPLE DELIVERY GROUP NUMBERS: 60164660

REVIEWER: Lori Bindner

QUALITY CONTROL ISSUE	COMPOUND(S)	QUALIFIER	SAMPLES AFFECTED
Reported result greater than the method detection limit and lower than the reporting limit	тос	J	RB-1

Checked by: LAB 4/28/2014 Reviewed by. AWD 5/21/2014